skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheng, Jiayu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Stability and reliability are of the most important concern for isolated microgrid systems that have no support from the utility grid. Interval predictions are often applied to ensure the system stability of isolated microgrids as they cover more uncertainties and robust control can be achieved based on more sufficient information. In this paper, we propose a probabilistic microgrid energy exchange method based on the Model Predictive Control (MPC) approach to make better use of the prediction intervals so that the system stability and cost efficiency of isolated microgrids are improved simultaneously. Appropriate scenarios are selected from the predictions according to the evaluation of future trends and system capacity. In the meantime, a two-stage adaptive reserve strategy is adopted to further utilize the potential of interval predictions and maintain the system security adaptively. Reserves are determined at the optimization stage to prepare some extra capacity for the fluctuations in the renewable generation and load demand at the operation stage based on the aggressive and conservative level of the system, which is automatically updated at each step. The optimal dispatch problem is finally formulated using the mixed-integer linear programming model and the MPC is formulated as an optimization problem with a discount factor introduced to adjust the weights. Case studies show that the proposed method could effectively guarantee the stability of the system and improve economic performance. 
    more » « less
  2. null (Ed.)
    In this paper, we consider a probabilistic microgrid dispatch problem where the predictions of the load and the Renewable Energy Source (RES) generation are given in the form of intervals. A hybrid method combining scenario-selected optimization and reserve strategy using the Model Predictive Control (MPC) framework is proposed. Specifically, first of all, an appropriate scenario is selected by the optimizer at each optimization stage, and then the optimal scheduling and reservation of system capacity are determined based on the selected scenario and possible variations in the future as provided by the predictors. In addition, a new reserve strategy is introduced to adaptively maintain system reliability and respond to variations in the hierarchical microgrid control. Simulations are conducted to compare our proposed method with the existing robust method and the deterministic dispatch with perfect information. Results show that our proposed method significantly improves the system efficiency while maintaining system reliability. 
    more » « less